CROQuant: Complex Rank-One Quantization Algorithm

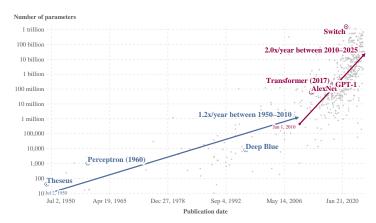
Maël Chaumette Rémi Gribonval Elisa Riccietti

OCKHAM Team

RAIM Meeting 2025

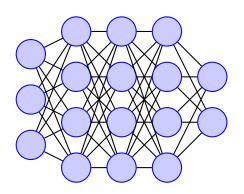
6/11/2025

Context

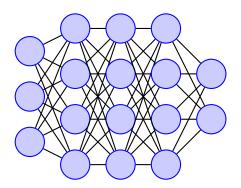


Explosion in the size of deep learning models. Source: [Samborska, 2025]

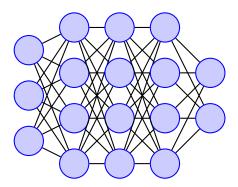
• Main goal: Quantize the weights of a neural network



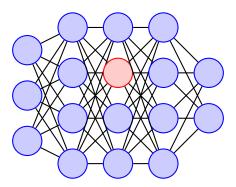
- Main goal: Quantize the weights of a neural network
- Naive approach: Map each weight to its nearest neighbor in the quantization set



- Main goal: Quantize the weights of a neural network
- Naive approach: Map each weight to its nearest neighbor in the quantization set
- Opportunity: Take into account the rescaling invariance property of ReLU neural networks [Neyshabur et al., 2015]

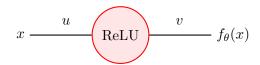


- Main goal: Quantize the weights of a neural network
- Naive approach: Map each weight to its nearest neighbor in the quantization set
- **Opportunity:** Take into account the *rescaling invariance* property of ReLU neural networks [Neyshabur et al., 2015]



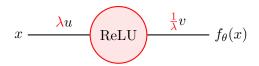
What is the rescaling invariance property?

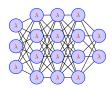
- $\bullet \ \theta = (u, v) \in \mathbb{R}^{m+n}$
- $f_{\theta}: x \in \mathbb{R}^m \mapsto \text{ReLU}(\langle u, x \rangle) v \in \mathbb{R}^n$

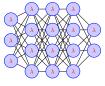


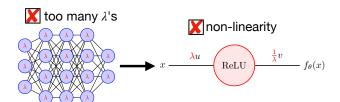
What is the rescaling invariance property?

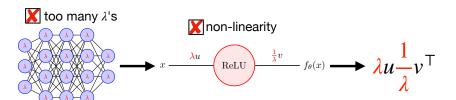
- $\theta = (u, v) \in \mathbb{R}^{m+n}$
- $f_{\theta}: x \in \mathbb{R}^m \mapsto \text{ReLU}(\langle \lambda u, x \rangle) \frac{1}{\lambda} v \in \mathbb{R}^n \text{ with } \lambda > 0$

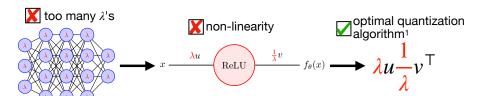




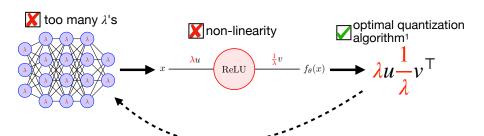




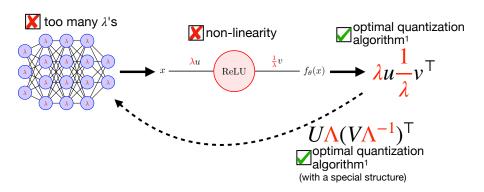




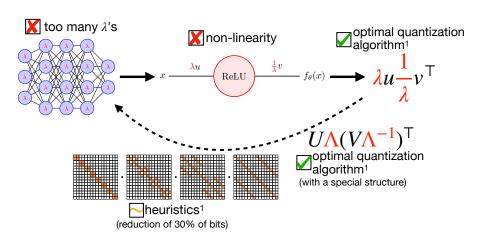
¹Proved by Gribonval et al. [2023]



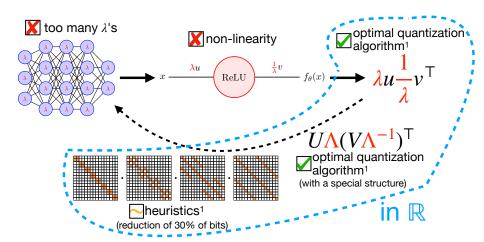
¹Proved by Gribonval et al. [2023]



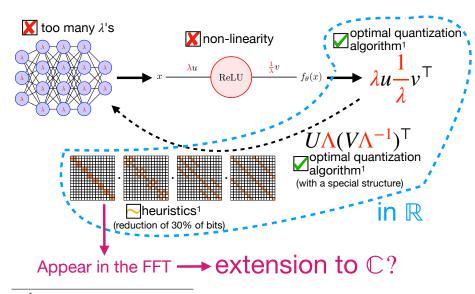
¹Proved by Gribonval et al. [2023]



¹Proved by Gribonval et al. [2023]



¹Proved by Gribonval et al. [2023]



¹Proved by Gribonval et al. [2023]

Quantization of complex rank-one matrices

$$\forall \lambda \in \mathbb{C}^*, \ (\lambda x) \left(\frac{1}{\overline{\lambda}}y\right)^H$$

- \mathbb{F}_t : set of floating-point numbers with t-bit significand
- $\mathbb{CF}_t := \mathbb{F}_t + i\mathbb{F}_t$

- \mathbb{F}_t : set of floating-point numbers with t-bit significand
- $\mathbb{CF}_t := \mathbb{F}_t + i\mathbb{F}_t$

Problem formulation

Given $(x,y) \in \mathbb{C}^m \times \mathbb{C}^n$, we want to solve:

$$\min_{\hat{x} \in \mathbb{CF}_t^m, \hat{y} \in \mathbb{CF}_t^n} ||xy^H - \hat{x}\hat{y}^H||^2$$

- ullet \mathbb{F}_t : set of floating-point numbers with t-bit significand
- $\mathbb{CF}_t := \mathbb{F}_t + i\mathbb{F}_t$

Problem formulation

Given $(x,y) \in \mathbb{C}^m \times \mathbb{C}^n$, we want to solve:

$$\min_{\hat{x} \in \mathbb{CF}_t^m, \hat{y} \in \mathbb{CF}_t^n} ||xy^H - \hat{x}\hat{y}^H||^2$$

Potential approaches

- \mathbb{F}_t : set of floating-point numbers with t-bit significand
- $\mathbb{CF}_t := \mathbb{F}_t + i\mathbb{F}_t$

Problem formulation

Given $(x,y) \in \mathbb{C}^m \times \mathbb{C}^n$, we want to solve:

$$\min_{\hat{x} \in \mathbb{CF}_t^m, \hat{y} \in \mathbb{CF}_t^n} ||xy^H - \hat{x}\hat{y}^H||^2$$

Potential approaches

Problem resolution

Key (simple) lemma: problem characterization (reminder of the real-case)

Given
$$(x,y)\in\mathbb{C}^m\times\mathbb{C}^n$$
, there exists a function $f:\mathbb{R}\mapsto\mathbb{R}_+$ such that

$$\hat{x}^* = \text{round}(\lambda^* x) \text{ and } \hat{y}^* = \text{round}(\mu^*(\lambda^*)y)$$

where
$$\lambda^* \in \arg\min_{\mathbb{R}} f$$

Problem resolution

Key (simple) lemma: problem characterization (in the complex-case)

Given
$$(x,y) \in \mathbb{C}^m \times \mathbb{C}^n$$
, there exists a function $f: \mathbb{C} \mapsto \mathbb{R}_+$ such that

$$\hat{x}^* = \text{round}(\lambda^* x) \text{ and } \hat{y}^* = \text{round}(\mu^*(\lambda^*)y)$$

where $\lambda^* \in \arg\min_{C} f$

Problem resolution

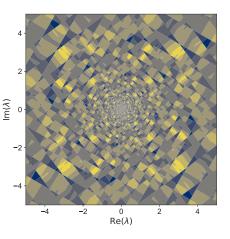
Key (simple) lemma: problem characterization (in the complex-case)

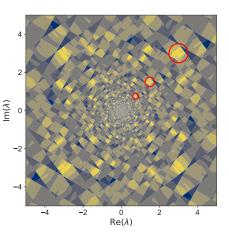
Given $(x,y)\in\mathbb{C}^m\times\mathbb{C}^n$, there exists a function $f:\mathbb{C}\mapsto\mathbb{R}_+$ such that

$$\hat{\boldsymbol{x}}^* = \operatorname{round}(\lambda^* x) \text{ and } \hat{\boldsymbol{y}}^* = \operatorname{round}(\mu^*(\lambda^*) y)$$

where $\lambda^* \in \arg\min_{\mathbb{C}} f$

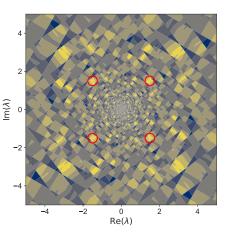
 \rightarrow Reduction of a problem with 2(m+n) variables to a one scalar problem.





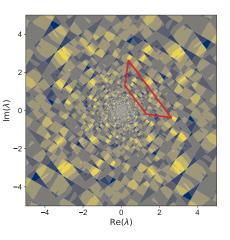
Properties of f:

ullet f is **invariant** by multiplication by 2



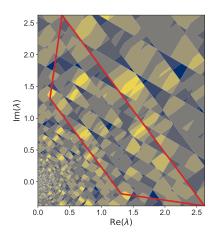
Properties of f:

 \bullet f is ${\bf invariant}$ by multiplication by 2 and i



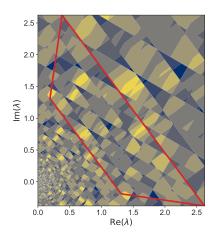
Properties of f:

 \bullet f is ${\bf invariant}$ by multiplication by 2 and i



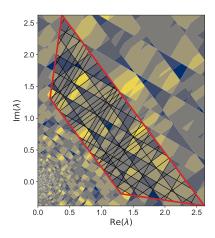
Properties of f:

 \bullet f is ${\bf invariant}$ by multiplication by 2 and i



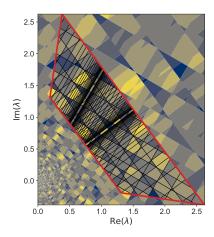
Properties of f:

- \bullet f is ${\bf invariant}$ by multiplication by 2 and i
- \bullet f is piecewise constant



Properties of f:

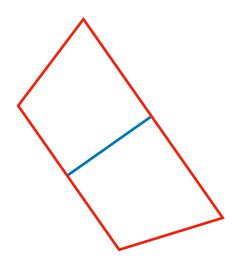
- ullet f is **invariant** by multiplication by 2 and i
- f is piecewise constant where discontinuity points are **lines**

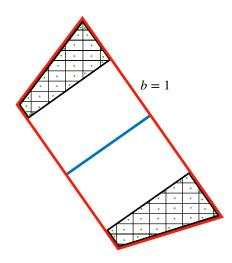


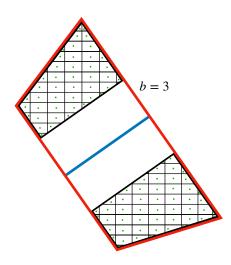
Properties of f:

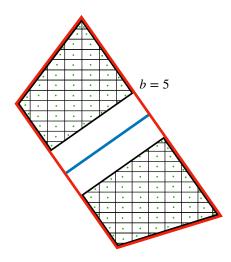
- ullet f is **invariant** by multiplication by 2 and i
- f is piecewise constant where discontinuity points are lines
- But with an infinite number of lines

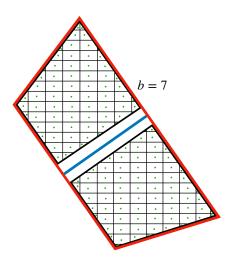
Definition of the algorithm







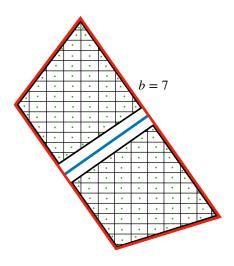




Algorithm steps

Iterate until b is reached:

- compute all the centroids from the polygonal pieces
- $oldsymbol{2}$ evaluate f on all these centroids
- **3** keep the **best** scaling factor, λ_b
- return $\hat{x}_b := \text{round}(\lambda_b x)$ and $\hat{y}_b := \text{round}(\mu_b y)$



Algorithm steps

Iterate until b is reached:

- compute all the centroids from the polygonal pieces
- $oldsymbol{2}$ evaluate f on all these centroids
- **3** keep the **best** scaling factor, λ_b

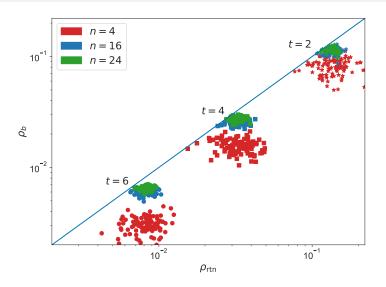
ightarrow **Lemma:** there exists $ilde{b} < +\infty$ that finds the optimal solution

Comparison with the baseline

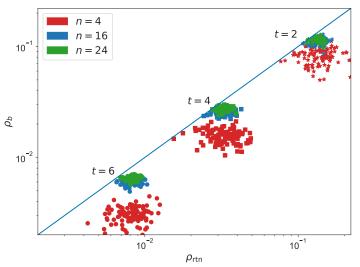
Metric definition:

$$\begin{split} \rho(\hat{x}, \hat{y}) &:= \|xy^H - \hat{x}\hat{y}^H\| / \|xy^H\| \\ \rho_b &:= \rho(\hat{x}_b, \hat{y}_b) \text{ and } \rho_{\mathsf{rtn}} := \rho(\mathrm{round}(x), \mathrm{round}(y)) \end{split}$$

Comparison with the baseline (b=3)

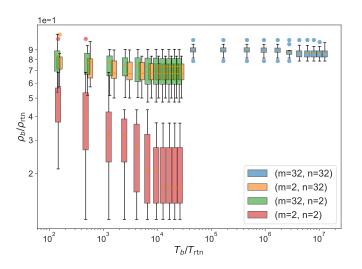


Comparison with the baseline (b = 3)

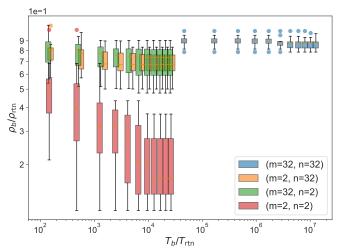


ightarrow Our algorithm is more accurate than the naive rounding approach

Role of the dimension and the parameter b (t=4)

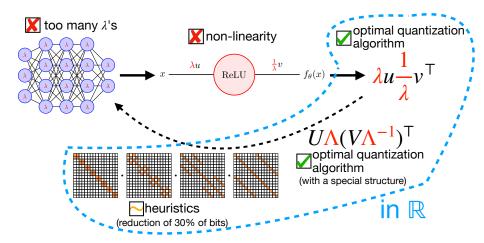


Role of the dimension and the parameter b (t=4)

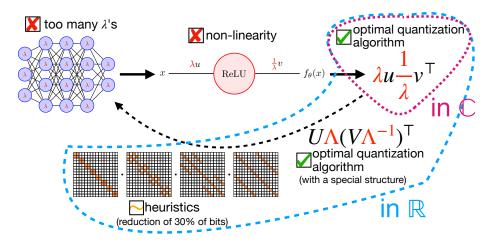


ightarrow Our algorithm is more interesting for small vectors In this case, increasing b improves significantly the accuracy

Outline

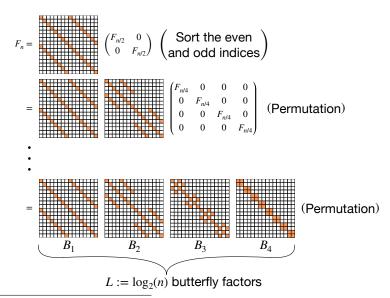


Outline



Application to butterfly matrices

What's FFT?



[Cooley and Tukey, 1965]

M. Chaumette

Objective

Consider $B_1,...,B_L \in \mathbb{C}^{n \times n}$. We want to solve

$$B_1^*, ..., B_L^* \in \arg\min_{\hat{B}_1, ..., \hat{B}_L \in \mathbb{C}^{n \times n}} ||B_1 \cdots B_L - \hat{B}_1 \cdots \hat{B}_L||^2$$

Objective

Consider $B_1,...,B_L \in \mathbb{C}^{n \times n}$. We want to solve $B_1^*,...,B_L^* \in \arg \min_{\hat{B}_1,...,\hat{B}_L \in \mathbb{C}^{n \times n}} \|B_1 \cdots B_L - \hat{B}_1 \cdots \hat{B}_L\|^2$

- For L=2: **Solvable** problem because it can be written as n independent **rank-one quantization problems**
- For L>2: use **parentheses** to express subproblems with L=2

Objective

Consider $B_1,...,B_L \in \mathbb{C}^{n \times n}$. We want to solve $B_1^*,...,B_L^* \in \arg \min_{\hat{B}_1,...,\hat{B}_L \in \mathbb{C}^{n \times n}} \|B_1 \cdots B_L - \hat{B}_1 \cdots \hat{B}_L\|^2$

- For L=2: **Solvable** problem because it can be written as n independent **rank-one quantization problems**
- ullet For L>2: use **parentheses** to express subproblems with L=2

Heuristics for the parenthesis decomposition

Pairwise: writing $(B_1B_2)(B_3B_4)\cdots(B_{L-1}B_L)$

Left-to-Right (LTR): writing $B_1(B_2(\cdots(B_{L-1}B_L)))$

Objective

Consider $B_1, ..., B_L \in \mathbb{C}^{n \times n}$. We want to solve

$$B_1^*, ..., B_L^* \in \arg\min_{\hat{B}_1, ..., \hat{B}_L \in \mathbb{C}^{n \times n}} ||B_1 \cdots B_L - \hat{B}_1 \cdots \hat{B}_L||^2$$

- For L=2: **Solvable** problem because it can be written as n independent **rank-one quantization problems**
- ullet For L>2: use **parentheses** to express subproblems with L=2

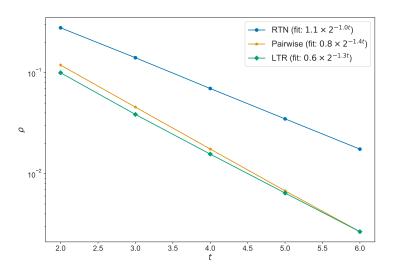
Heuristics for the parenthesis decomposition

Pairwise: writing $(B_1B_2)(B_3B_4)\cdots(B_{L-1}B_L)$

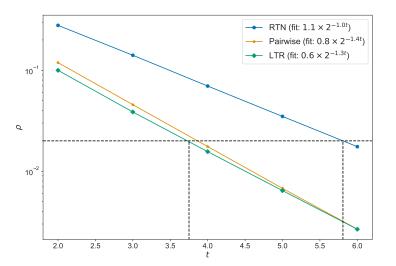
Left-to-Right (LTR): writing $B_1(B_2(\cdots(B_{L-1}B_L)))$

The metric is
$$ho := \frac{\|B_1 \cdots B_L - \hat{B}_1 \cdots \hat{B}_L\|}{\|B_1 \cdots B_L\|}$$

Comparison with the baseline in terms of t (n = 256 and b = 3)

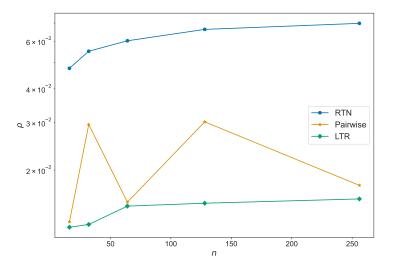


Comparison with the baseline in terms of t (n = 256 and b = 3)

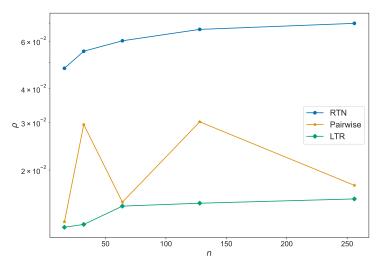


 \rightarrow For a given precision, the number of bits is reduced by 30% compared to RTN

On the FFT in terms of the dimension (t = 4 and b = 3)



On the FFT in terms of the dimension (t = 4 and b = 3)



ightarrow LTR is more accurate (pprox 10 times) and equally adapted for even/odd L

Conclusion

Wrap-up:

- Optimal complex-valued rank-one quantization algorithm
- \bullet Compared to RTN, the number of bits is reduced by 30% for a given precision on butterfly matrices

What's next?

- Short version available [Chaumette et al., 2025] and working paper soon to be released
- Quantization of a product of matrices of any rank
- Extend this work to quantize ReLU networks

Thanks for your attention

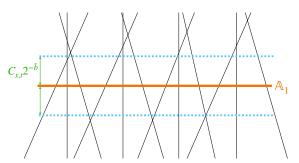
References

- V. Samborska. Scaling up: how increasing inputs has made artificial intelligence more capable. *Our World in Data*, 2025. https://ourworldindata.org/scaling-up-ai.
- [2] B. Neyshabur, R. Tomioka, and N. Srebro. Norm-based capacity control in neural networks. In *Conference on learning theory*, pages 1376–1401. PMLR, 2015.
- [3] R. Gribonval, T. Mary, and E. Riccietti. Optimal quantization of rank-one matrices in floating-point arithmetic—with applications to butterfly factorizations. 2023.
- [4] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex fourier series. *Mathematics of computation*, 19 (90):297–301, 1965.
- [5] M. Chaumette, R. Gribonval, and E. Riccietti. CROQuant: Complex Rank-One Quantization Algorithm. In *GRETSI 2025*, Strasbourg, France, August 2025.

Expression of f

$$\begin{split} f: \lambda \in \mathbb{C} &\mapsto \max_{\hat{x} \in \mathrm{round}(\lambda x)} \lVert x y^H - \hat{x} \, \mathrm{round}(\mu(\hat{x}) y)^H \rVert \\ &\text{where } \mu(\hat{x}) := \frac{\langle \hat{x}, x \rangle}{\lVert x \rVert^2} \text{ if } x \neq 0 \text{ and } 0 \text{ otherwise.} \end{split}$$

Towards an optimal stopping criterion



Typical behaviour near the accumulation lines.

Bound for the minimum value

Under mild assumptions on x, y and for any $b \ge \tilde{b}$, we have

$$\min\left(\min_{\mathbb{A}}f-L_{x,y,t}2^{-\pmb{b}},f(\lambda_{\pmb{b}})\right)\leq \min_{\mathbb{C}}f\leq f(\lambda_{\pmb{b}})$$