
CROQuant: Complex Rank-One Quantization
Algorithm
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Context

Publication date

Jul 2, 1950 Apr 19, 1965 Dec 27, 1978 Sep 4, 1992 May 14, 2006 Jan 21, 2020

Number of parameters

10

100

1,000

10,000

100,000

1 million

10 million

100 million

1 billion

10 billion

100 billion

1 trillion

Jul 2, 1950Jul 2, 1950

1.2x/year between 1950–20101.2x/year between 1950–2010

TheseusTheseus

Perceptron (1960)Perceptron (1960)

Deep BlueDeep Blue

Jan 1, 2010Jan 1, 2010

2.0x/year between 2010–20252.0x/year between 2010–2025

AlexNetAlexNet
Transformer (2017)Transformer (2017) GPT-1GPT-1

SwitchSwitch

Explosion in the size of deep learning models.
Source: [Samborska, 2025]
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Objective

Main goal: Quantize the weights of a neural network

Naive approach: Map each weight to its nearest neighbor in the
quantization set

Opportunity: Take into account the rescaling invariance property of
ReLU neural networks [Neyshabur et al., 2015]
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What is the rescaling invariance property?

θ = (u, v) ∈ Rm+n

fθ : x ∈ Rm 7→ ReLU(⟨u, x⟩)v ∈ Rn

ReLUx
u v

fθ(x)
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What is the rescaling invariance property?

θ = (u, v) ∈ Rm+n

fθ : x ∈ Rm 7→ ReLU(⟨λu, x⟩) 1λv ∈ Rn with λ > 0

ReLUx
λu 1

λv
fθ(x)
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optimal quantization

algorithm1
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Quantization of complex rank-one matrices

∀λ ∈ C∗, (λx)

(
1

λ̄
y

)H

M. Chaumette RAIM Meeting 2025 6 / 20



Problem statement

Ft: set of floating-point numbers with t-bit significand

CFt := Ft + iFt

Problem formulation

Given (x, y) ∈ Cm × Cn, we want to solve:

min
x̂∈CFm

t ,ŷ∈CFn
t

∥xyH − x̂ŷH∥2

Potential approaches
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CFt := Ft + iFt

Problem formulation

Given (x, y) ∈ Cm × Cn, we want to solve:

min
x̂∈CFm

t ,ŷ∈CFn
t

∥xyH − x̂ŷH∥2

Potential approaches

Error

Cost

Naive (RTN)

Brute-force

Ours
(with rescaling-invariance)
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Problem resolution

Key (simple) lemma: problem characterization (reminder of the real-case)

Given (x, y) ∈ Cm × Cn, there exists a function f : R 7→ R+ such that

x̂∗ = round(λ∗x) and ŷ∗ = round(µ∗(λ∗)y)

where λ∗ ∈ argmin
R

f

→ Reduction of a problem with 2(m+ n) variables
to a one scalar problem.
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Study of the function f
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Properties of f :

f is invariant by multiplication
by 2 and i

f is piecewise constant where
discontinuity points are lines

But with an infinite number of
lines
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Study of the function f
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Definition of the algorithm

Algorithm steps

Iterate until b is reached:

1 compute all the centroids from
the polygonal pieces

2 evaluate f on all these centroids

3 keep the best scaling factor, λb

4 return x̂b := round(λbx) and
ŷb := round(µby)

→ Lemma: there exists b̃ < +∞ that finds the optimal solution
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Definition of the algorithm
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Definition of the algorithm

b = 5

Algorithm steps

Iterate until b is reached:
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Definition of the algorithm

b = 7 Algorithm steps

Iterate until b is reached:

1 compute all the centroids from
the polygonal pieces

2 evaluate f on all these centroids

3 keep the best scaling factor, λb

4 return x̂b := round(λbx) and
ŷb := round(µby)

→ Lemma: there exists b̃ < +∞ that finds the optimal solution
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Comparison with the baseline

Metric definition:

ρ(x̂, ŷ) := ∥xyH − x̂ŷH∥/∥xyH∥
ρb := ρ(x̂b, ŷb) and ρrtn := ρ(round(x), round(y))
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rtn
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t = 2
n = 4
n = 16
n = 24

→ Our algorithm is more accurate than the naive rounding approach
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Comparison with the baseline (b = 3)
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Role of the dimension and the parameter b (t = 4)
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→ Our algorithm is more interesting for small vectors
In this case, increasing b improves significantly the accuracy
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Application to butterfly matrices
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What’s FFT?

Fn = (Fn/2 0
0 Fn/2)

=
Fn/4 0 0 0
0 Fn/4 0 0
0 0 Fn/4 0
0 0 0 Fn/4

=

(Permutation)

(Permutation)

( Sort the even
and odd indices)

B1 B2 B3 B4

L := log2(n) butterfly factors
[Cooley and Tukey, 1965]
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Complex butterfly quantization

Objective

Consider B1, ..., BL ∈ Cn×n. We want to solve

B∗
1 , ..., B

∗
L ∈ arg min

B̂1,...,B̂L∈Cn×n
∥B1 · · ·BL − B̂1 · · · B̂L∥2

For L = 2: Solvable problem because it can be written as n
independent rank-one quantization problems

For L > 2: use parentheses to express subproblems with L = 2

Heuristics for the parenthesis decomposition

Pairwise: writing (B1B2)(B3B4) · · · (BL−1BL)
Left-to-Right (LTR): writing B1(B2(· · · (BL−1BL)))

The metric is ρ :=
∥B1 · · ·BL − B̂1 · · · B̂L∥

∥B1 · · ·BL∥
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Comparison with the baseline in terms of t (n = 256 and b = 3)
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M. Chaumette RAIM Meeting 2025 17 / 20



Comparison with the baseline in terms of t (n = 256 and b = 3)

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
t

10
2

10
1

RTN (fit: 1.1 × 2 1.0t)

Pairwise (fit: 0.8 × 2 1.4t)

LTR (fit: 0.6 × 2 1.3t)

→ For a given precision, the number of bits is reduced by 30% compared
to RTN

M. Chaumette RAIM Meeting 2025 17 / 20



On the FFT in terms of the dimension (t = 4 and b = 3)
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→ LTR is more accurate (≈ 10 times) and equally adapted for even/odd L
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Conclusion

Wrap-up:

Optimal complex-valued rank-one quantization algorithm

Compared to RTN, the number of bits is reduced by 30% for a given
precision on butterfly matrices

What’s next?

Short version available [Chaumette et al., 2025] and working paper
soon to be released

Quantization of a product of matrices of any rank

Extend this work to quantize ReLU networks
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Thanks for your attention
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Expression of f

f : λ ∈ C 7→ max
x̂∈round(λx)

∥xyH − x̂ round(µ(x̂)y)H∥

where µ(x̂) := ⟨x̂,x⟩
∥x∥2 if x ̸= 0 and 0 otherwise.
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Towards an optimal stopping criterion

𝔸1
Cx,t2−b̃

Typical behaviour near the accumulation lines.

Bound for the minimum value

Under mild assumptions on x, y and for any b ≥ b̃, we have

min

(
min
A

f − Lx,y,t2
−b, f(λb)

)
≤ min

C
f ≤ f(λb)
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