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Publication date

Explosion in the size of deep learning models.
Source: [Samborska, 2025]
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Objective

e Main goal: Quantize the weights of a neural network
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Objective

e Main goal: Quantize the weights of a neural network
o Naive approach: Map each weight to its nearest neighbor in the

quantization set
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Objective

e Main goal: Quantize the weights of a neural network

o Naive approach: Map each weight to its nearest neighbor in the
quantization set

@ Opportunity: Take into account the rescaling invariance property of
ReLU neural networks [Neyshabur et al., 2015]
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Objective

e Main goal: Quantize the weights of a neural network

o Naive approach: Map each weight to its nearest neighbor in the
quantization set

@ Opportunity: Take into account the rescaling invariance property of
ReLU neural networks [Neyshabur et al., 2015]
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What is the rescaling invariance property?

e 0= (u,v) e R™t"
e fy:x €R™+— ReLU({u,x))v € R"
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What is the rescaling invariance property?

e 0= (u,v) € R™"
o fp:x €R™— ReLU((\u,z))jv € R with A >0
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Outline

optimal quantization
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Quantization of complex rank-one matrices
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Problem statement

o [F;: set of floating-point numbers with t-bit significand
L (CFt = Ft + 'lFt
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Problem statement

o [F;: set of floating-point numbers with t-bit significand
L (C]Ft = Ft + ’LIFt

Problem formulation

Given (z,y) € C™ x C", we want to solve:

; H  ~-H|2
min —
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Problem statement

o [F;: set of floating-point numbers with t-bit significand
L CFt = Ft + ’LIFt

Problem formulation

Given (z,y) € C™ x C", we want to solve:

; H  ~-H|2
min —
@e@]F;"}geCIF?ny 25l

Potential approaches

Error
® Naive (RTN)
Brute-force
(] [
»Cost
Ours
(with rescaling-invariance) )
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Problem resolution

Key (simple) lemma: problem characterization (reminder of the real-case)
Given (z,y) € C™ x C", there exists a function f : R — R such that

2" =round(\*z) and §* = round(u*(\*)y)

where \* € arg mRinf
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Problem resolution

Key (simple) lemma: problem characterization (in the complex-case)
Given (z,y) € C™ x C", there exists a function f : C +— R such that

2" =round(\*z) and §* = round(u*(\*)y)

where \* € arg Irgnf
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Problem resolution

Key (simple) lemma: problem characterization (in the complex-case)
Given (z,y) € C™ x C", there exists a function f : C +— R such that

2" =round(A\*x) and " = round(u*(A\")y)

where \* € arg Irgnf

— Reduction of a problem with 2(m + n) variables
to a one scalar problem.
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Study of the function f
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Study of the function f

Properties of f:

e f is invariant by multiplication
by 2 and ¢

@ f is piecewise constant where
discontinuity points are lines
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Study of the function f

Properties of f:

e f is invariant by multiplication
by 2 and ¢

@ f is piecewise constant where
discontinuity points are lines

@ But with an infinite number of
lines

0.0 0.5 1.0 1.5 2.0 25
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Definition of the algorithm
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Definition of the algorithm
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Definition of the algorithm

A\
yammn
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Definition of the algorithm

Iterate until b is reached:

., A the polygonal pieces

7/ JENENENR\ @ evaluate f on all these centroids
SN ENENENE \ © keep the best scaling factor, A,

"\: e e S \ @ return I := round(\yx) and
N [ [ = )
=

y 4
\l\ i I I N D @ compute all the centroids from
\ .

— Lemma: there exists b < +oo that finds the optimal solution
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Comparison with the baseline

Metric definition:
p(2,9) = [lzy™ — 29" |/ ||zy™ |

po = (s, ) and prn == p(round(x), round(y))
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Comparison with the baseline (b = 3)
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Comparison with the baseline (b = 3)
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— Our algorithm is more accurate than the naive rounding approach
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Role of the dimension and the parameter b (¢ =4)
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Role of the dimension and the parameter b (¢ =4)

1e-1
:] R S S LT
7<
6<
5<
£ 41
2
& 3l
2 [ (m=32, n=32)
1 (m=2, n=32)
(=32, n=2)
[ (m=2, n=2)
10° 10° 10° 10° 10° 10

Tol/Ten
— Our algorithm is more interesting for small vectors
In this case, increasing b improves significantly the accuracy
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Application to butterfly matrices
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What's FFT?

Fo= (F,,/z 0 ) Sort the even
0 Fr/ \and odd indices

0
= (Permutation)

= (Permutation)

L :=log,(n) butterfly factors

[Cooley and Tukey, 1965]
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Complex butterfly quantization

Objective

Consider By, ..., B, € C"*™. We want to solve

Bf,..,Bif carg min |By---By—B;---Bg|?
Bi,...,BpeCnxn
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Complex butterfly quantization

Objective

Consider By, ..., B, € C"*™. We want to solve

Bf,..,Bif carg min |By---By—B;---Bg|?
Bi,...,BpeCnxn

@ For L = 2: Solvable problem because it can be written as n
independent rank-one quantization problems

e For L > 2: use parentheses to express subproblems with L = 2
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Complex butterfly quantization

Objective

Consider By, ..., B, € C"*™. We want to solve

Bf,..,Bif carg min |By---By—B;---Bg|?
Bi,...,BpeCnxn

@ For L = 2: Solvable problem because it can be written as n
independent rank-one quantization problems

e For L > 2: use parentheses to express subproblems with L = 2

Heuristics for the parenthesis decomposition

Pairwise: writing (B1B2)(B3By) - -+ (Br-1BrL)
Left-to-Right (LTR): writing By (Ba(--- (Br-1BL)))
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Complex butterfly quantization

Objective

Consider By, ..., B, € C"*™. We want to solve

Bf,..,Bif carg min |By---By—B;---Bg|?
Bi,...,BpeCnxn

@ For L = 2: Solvable problem because it can be written as n
independent rank-one quantization problems

e For L > 2: use parentheses to express subproblems with L = 2

Heuristics for the parenthesis decomposition

Pairwise: writing (B1B2)(B3By) - -+ (Br-1BrL)
Left-to-Right (LTR): writing By (Ba(--- (Br-1BL)))

HBl“'BL_Bl"‘BL”
|B1--- Bl

The metric is p :=
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Comparison with the baseline in terms of ¢ (n =256 and b = 3)

—e— RTN (fit: 1.1 x 271.0t)
—— Pairwise (fit: 0.8 x 271:4t)
—— LTR (fit: 0.6 x 2713)
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Comparison with the baseline in terms of ¢ (n =256 and b = 3)

—e— RTN (fit: 1.1 x 2-1.0t)
—— Pairwise (fit: 0.8 x 2~1:4)
—e— LTR (fit: 0.6 x 2713t

2.0 25 30 35 40 45 50 55 6.0
t

— For a given precision, the number of bits is reduced by 30% compared
to RTN
RAIM Meeting 2025 17 / 20



On the FFT in terms of the dimension (¢t =4 and b = 3)
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On the FFT in terms of the dimension (¢t =4 and b = 3)

6x10"
4x107
—e— RTN
-2
Q 3x10 —— Pairwise
—— LTR
2x107°

50 100 150 200 250
n

— LTR is more accurate (= 10 times) and equally adapted for even/odd L
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Conclusion

Wrap-up:
@ Optimal complex-valued rank-one quantization algorithm

e Compared to RTN, the number of bits is reduced by 30% for a given
precision on butterfly matrices

What's next?

@ Short version available [Chaumette et al., 2025] and working paper
soon to be released

@ Quantization of a product of matrices of any rank

@ Extend this work to quantize ReLU networks
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Thanks for your attention
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Expression of f

f:AeCr— max |zy™ — Zround(u(2)y)?||
Z€round(Ax)

where p(2) 1= ﬁxﬁ”g if z # 0 and 0 otherwise.
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Towards an optimal stopping criterion

T,

Typical behaviour near the accumulation lines.

Bound for the minimum value

Under mild assumptions on z,y and for any b > b, we have

min (Hxnf - Lx,y7t2—b’ f()\b)) < n%nf < f(\)
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