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Context

Main goal: Quantize the weights of a neural network
by using rescaling invariance property [Neyshabur et al., 2015].
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Context

We keep one neuron where
o 0= (u,v) € Riintdou
® Ry:a € R% — ReLU((u, ))v = 1y, zysouv ' & € Rbow
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Context

We keep one neuron where
o 0= (u,v) € Riintdou
® Ry:x € R% — ReLU((u, 2))v = 1y, zys0 usv ' @ € R
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Context

We keep one neuron where
o 0= (u,v) € RiinFdou

o Rp:x € R — (u,z)v = Augv'z € Rlow
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Context

@ Optimal quantization of real-valued rank-one matrices is done in
Gribonval et al. [2023] by using rescaling invariance
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Context

@ Optimal quantization of real-valued rank-one matrices is done in
Gribonval et al. [2023] by using rescaling invariance

@ Application to quantization of butterfly matrices

© Butterfly matrices appear in factorization of dense matrices,
e.g., Fast Fourier Transform (FFT) [Cooley and Tukey, 1965]

= Quantization of complex rank-one matrices to quantize butterfly
matrices and see the impact on the FFT.
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Quantization of complex rank-one matrices

1 \H
VA e C, (M) (Xy)
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Complex-valued rank-one matrices

Problem formulation

Given (z,y) € C™ x C" and letting CF, := F; + iFF; (with F;: floats with
t-bit significand), we want to solve:

* % . H ~~H 12
z*,y Eargiewr;,rg}gewllfcy — 29" |
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Complex-valued rank-one matrices

Problem formulation

Given (z,y) € C™ x C" and letting CF, := F; + iFF; (with F;: floats with
t-bit significand), we want to solve:

* % . H ~~H 12
z*,y Eargiewrgg}gewllxy — 29" |

Potential approaches

e Naive: Map z and y to their nearest neighbor in CF; with round(-).

@ Real-valued: Use optimal quantization algorithm for real-valued
rank-one matrices [Gribonval et al., 2023].
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Problem resolution

Lemma: problem characterization

~ ~H 112 .
= inf f(\
xE(C]Fm,QGCIF”Hmy — 2| igcf( )

where ) is the scaling parameter.

— Reduction of a problem with 4mn variables to a one scalar problem.
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Study of the function f with z,y € C?
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Study of the function f with z,y € C?
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Definition of the algorithm

@ Introduction of a parameter b,, € N to control the number of
discontinuity lines.

GRETSI2025 715



Definition of the algorithm

@ Introduction of a parameter b,, € N to control the number of
discontinuity lines.

@ Algorithm steps:
© compute all the centroids from the discontinuity lines
© evaluate f on all these centroids
© keep the best scaling factor, \;,
@ return &, = round(Ap,, x) and G, := round(up,,y)
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Definition of the algorithm

@ Introduction of a parameter b,, € N to control the number of
discontinuity lines.

@ Algorithm steps:
© compute all the centroids from the discontinuity lines
© evaluate f on all these centroids
© keep the best scaling factor, \;,
@ return &, = round(Ap,, x) and G, := round(up,,y)

H _ -~~H
Evaluation metric: p := ny—ny”
|zy™ ||
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Results with 100 pairs z,y € C”
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Application to butterfly matrices
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What's FFT?

. (F,,,z 0 ) Sort the even
" 0 Fp and odd indices
Fuy 0 0 0
0 Fyu 0O 0 .
- 0 0 F, 0 (Permutation)

0 0 0 Fy

= (Permutation)

B, B, B, B,
L := log,(n) butterfly factors
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Complex butterfly quantization

New problem formulation

Consider By, ..., B, € C™*™. The new quantization problem is

Bf,..,B} €arg  min |B1---Br — Bi--- By
Bji,...,BpeCnxn
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Complex butterfly quantization

New problem formulation

Consider By, ..., B, € C™*™. The new quantization problem is

Bf,..,B} €arg  min |B1---Br — Bi--- By
Bi,...,BreCnxn

Solvable problem with L. = 2: the problem can be written as n
independant rank-one quantization problems.

Heuristic for the parenthesis decomposition
Pairwise: writing (B1B2)(B3B4) -+ (Br-1BL)

HBI"’BL_Bl"'BLH
B~ Bl

The metric is p :=
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Quantization error on the butterfly decomposition

—e— RTN (fit: 1.1 x 2710t
—— Pairwise (fit: 0.8 x 2~1:4)

2.0 25 30 35 40 45 50 55 6.0
t

Average on 10 gaussian matrices of p in terms of ¢ with n = 256 and b,,, = 3.
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Quantization error on the butterfly decomposition

—e— RTN (fit: 1.1 x 2710t
—— Pairwise (fit: 0.8 x 2~14)

Bit reduction of 1 — ;1 = 30%

N

2.0 25 30 35 40 45 5.0 55 6.0
t

Average on 10 gaussian matrices of p in terms of ¢ with n = 256 and b,,, = 3.
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Quantization error on the FFT

Let
@ x € R™ be the signal e y:=Fr=5B,---Brzx

ey:=Fr=B;---BpxeC" o pi == Hz‘l‘yﬁll
its Fourier transform the comparison metric
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Quantization error on the FFT

Let .
e y:=Fr=5B,---Brzx

@ x € R™ be the signal
ly—=all

ey =Fx=B;---Brx eC" ® pfit =
its Fourier transform the comparison metric

N

— RTN
Pairwise

Pt

107 T T r T r
50 100 150 200 250
n

Average on 10 gaussian signals of pg in terms of n with t =5 and b,,, = 3

M. Chaumette
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Conclusion

Wrap-up:
@ High-performance complex-valued rank-one quantization algorithm

e Compared to RTN, the number of bits is reduced by 30% for a given
precision on butterfly matrices

What's next?
@ Working on an extended version
@ Quantization of a product of matrices of any rank

@ Extend this work to quantize ReLU networks
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Thanks for your attention
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Appendix: on Lemma 1 and Lemma 2

Expression of f

f:AeCr  max |lzy™ — Zround(u(2)y)”||
Z€round(Az)

where (%) := {22 if £ 0 and 0 otherwise.

[

Lemma: Discontinuity points of f

Let x € C™. For each xj := u +iv, j = 1, ..., m, the discontinuity points
of the function A € Q — round(Az;) have for equations

ulm(\) = —vRe()\) (k + %)22—b—t
vIm(A) = uRe(N) + (kK + %)22—6—75 vk € [[Qt—l, of _ 1],vb € N
vIm(\) = uRe(\) — (k + %)22—b—t
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Appendix: more results

Proposition: on the infimum of f

We can prove that:
@ f is continuous on the accumulation lines.

@ f admits a minimizer on C.
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