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Résumé – Cet article présente un algorithme de quantification pour les matrices de rang un à valeurs complexes, qui exploite
les invariances par remise à l’échelle du problème pour obtenir un meilleur résultat que la quantification au plus proche voisin.
En s’appuyant sur cet algorithme on propose aussi une approche pour la quantification des matrices creuses à structure papillon à
valeurs complexes apparaissant par exemple dans la transformée de Fourier rapide. Comparé à la quantification au plus proche
voisin élément par élément, on obtient ainsi une réduction de 30% du nombre de bits nécessaires pour une précision donnée sur les
matrices papillons, tout en maintenant une complexité polynomiale en la dimension des matrices.

Abstract – This paper presents a quantization algorithm for complex-valued rank-one matrices, which exploits rescaling-
invariances of the problem to obtain better results than round-to-nearest strategy. This algorithm can be used as a building
block for an heuristic stategy to quantize complex-valued butterfly-structured sparse matrices appearing for example in the fast
Fourier transform. Compared to element-wise round-to-nearest quantization we reduce by 30% the number of bits for a given
precision on butterfly matrices, while maintaining a polynomial time complexity in the dimension of the matrices.

1 Introduction

Quantization is a fundamental issue in computer science
and machine learning. With the ever-increasing size of models
and data, the need to reduce memory by lowering numerical
precision while maintaining acceptable performance is becom-
ing crucial. In particular, quantization reduces the memory
required to store matrices and speeds up the computations.
These advantages are widely needed for deep neural networks,
which are mainly composed of huge, dense matrices.

Rank-one matrices play a central role in many compression
problems in machine learning and signal processing. Recently,
an optimal quantization approach for real-valued rank-one
matrices, which exploits rescaling-invariances to minimize the
quantization error, was introduced in [7]. In this work, we
extend these results to the case of complex-valued matrices,
an essential generalization to treat several applications in sig-
nal processing, such as the Fast Fourier Transforms (FFT).
Indeed, the FFT involves a butterly structure, corresponding
to a product of structured sparse matrices often used to fac-
torize dense matrices, such as Hadamard and discrete cosine
transform matrices [8], to speed up matrix-vector products
and reduce memory space [10]. Quantization of such matrices
further amplifies these computational gains. Their particular
structure allows quantization to be heuristically decomposed
into a succession of rank-one quantization problems exploiting
our approach.

In Section 2, we formalize the quantization problem for
complex rank-one matrices and explain why this problem can-
not be solved simply with the optimal quantization algorithm
applied to the real and imaginary parts.

We propose in Section 3 an algorithm adapted to this com-
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plex setting. We show that the properties of invariance by
rescaling persist in the complex setting, and allow for more
accurate quantization than a naive nearest-neighbor rounding
approach. Our algorithm depends on a parameter dm, which
controls the accuracy and affects the computational time (the
higher dm the higher the accuracy but the longer the computa-
tional time). However, we empirically show that small values
of the parameter give good results. This algorithm is also
much faster than the brute-force method of testing all possible
combinations for each element of the rank-one matrix: the
latter provides an algorithm with exponential time complexity
in t, the number of significant bits, and in the dimensions m,n
of the matrix; whereas our algorithm has a time complexity
of O(nmmin(n,m)d2m2

2t), which is simply polynomial in
the dimension of the rank-one matrix. The exponential depen-
dence on t is tractable in this context because we are interested
in small values of t, typically t = 4 or 6 for applications in
modern float formats typically used in machine learning.

In Section 4, we discuss the quantization of complex butter-
fly matrices that play a central role in the FFT. Our algorithm
provides quantization that is also more efficient than the naive
rounding approach. At a given accuracy, our algorithm will
need 30% fewer bits than the naive rounding method.

Notations. Ft is a set of floating-point numbers with t-bit of
significand, as in [7]. We denote vectors in lowercase boldface
(x) and matrices in uppercase boldface letters (X). ∥·∥ is
the Frobenius norm. Re, Im denote the real and imaginary
parts of a complex number, which we quantize separately. We
therefore define CFt := Ft + iFt.

2 Problem formulation and baselines
Given x ∈ Cm and y ∈ Cn, we formulate the quantization

problem as the following minimization problem:

x̂, ŷ ∈ arg min
x̂∈CFm

t ,ŷ∈CFn
t

∥xyH − x̂ŷH∥2︸ ︷︷ ︸
Cx,y(x,y)

. (1)
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Like in [7], the naive approach, called round-to-nearest (RTN),
involves mapping each element of x and y to its nearest neigh-
bor in CFt. We define the function round(·) that maps the
real and the imaginary parts of a complex number to their
nearest neighbor in Ft. For a vector, the round function is
applied element-wise. This method does not take into account
that the problem is invariant by rescaling: ∀λ ∈ C∗,xyH =
(λx)( 1

λ
y)H . Another possible method is to apply separately

the optimal algorithm of [7] to the real and imaginary parts
of x and y. However, this method is not optimal either, since
it omits cross-terms in the product of the complex numbers.
We therefore need to find another method to obtain optimal
quantization of complex rank-one matrices.

3 Proposed quantization algorithm

In this section, after characterizing the optimal solution to
the quantization problem (1) we build an algorithm providing
an efficient approximate solution, discuss its complexity, and
finally present its performance against the RTN method.

Characterizing the optimal solution. The following lemma
is a key result to address (1).

Lemma 1. Given x ∈ Cm, y ∈ Cn and t ≥ 1, it holds

inf
x̂∈CFm

t ,ŷ∈CFn
t

∥xyH − x̂ŷH∥2 = inf
λ∈C

f(λ) (2)

with f(λ) := max
x̂∈round(λx)

∥xyH − x̂ round(µ(x̂)y)H∥2 (3)

where µ(x̂) :=

{
⟨x,x̂⟩
∥x̂∥2 if x̂ ̸= 0

0 otherwise
(4)

The lemma and its proof are the complex-valued analog of
[7, Lemma 4.2], that was shown to allow to reduce the 4mn-
variable optimization problem (1) to a one-variable problem:
to find an optimal λ∗ of f defined in (3), assuming it exists.

Minimizing f : restricting to compact domain. It is easy
to show that f(2λ) = f(iλ) = f(λ) for every λ ∈ C, so
the study of the function can be limited to C++

[1,2] := {z ∈
C, |z| ∈ [1, 2], arg(z) ∈ [0, π

2 ]} or any compact domain Ω ⊂
C generating a tiling of the complex plane via dilations and
rotation (i.e. with the sets ik2jΩ, 0 ≤ k < 3, j ∈ Z).

Using the piecewise constant nature of f . Furthermore,
since the function λ 7→ round(λx) is piecewise constant,
f is also piecewise constant, so finding a minimizer on C++

[1,2]
amounts to finding on which of the corresponding pieces
f attains the smallest value. The simplest way to individu-
ate these pieces is to study the breakpoints of the function
λ ∈ C 7→ round(λx) where x ∈ Cm. The breakpoints corre-
spond to λ values for which there is at least one xi such that
round(λxi) corresponds to a tie in the choice of the nearest
neighbor for the real or the imaginary part.

Characterization of breaklines. The following result de-
scribes these breakpoints.

Lemma 2. Consider x ∈ Cm. For each entry xk := a+ ib,
the breakpoints of λ ∈ C 7→ round(λxk) are straight lines in
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Figure 1 – Function λ ∈ C 7→ ∥xyH−x̂(λ)ŷ(λ)H∥
∥xyH∥ with

x̂(λ) := round(λx), ŷ(λ) := round(µ(x̂(λ))y) and
µ(x̂(λ)) defined in (4). Breaklines of the function λ ∈
C++

[1,2] 7→ round(λx) in black (corresponding to d ≤ 4 in
Lemma 2), centroids in green, accumulation lines in orange.
The search space C++

[1,2] is outlined in red. Here, x,y ∈ C2

were drawn with real and imaginary parts following a uniform
distribution in [0, 1] and t = 4.

the complex plane with equations{
a Im(λ) = −bRe(λ) + s(k + 1

2 )2
−d−t

b Im(λ) = aRe(λ) + s(k + 1
2 )2

−d−t

∀k ∈ J2t−1, 2t − 1K, ∀s ∈ {−1,+1}, ∀d ∈ Z

(5)

The proof is an adaptation of the proof in [7, Lemma 5.1].
We will call breaklines the lines defined by (5). There are
infinitely many such breaklines approximating “accumula-
tion lines” defined by taking d → +∞, with equations
a Im(λ)+bRe(λ) = 0 (resp. b Im(λ)−aRe(λ) = 0). Figure
1 shows the typical shape of f on C++

[1,2] with its breaklines
(corresponding to d ≤ 4), and accumulation lines displayed in
orange.

Construction of the algorithm. As in the real-valued case,
since f is piecewise constant, minimizing it amounts to finding
on which of the pieces (delimited by its breaklines) it attains
the smallest value. However, contrary from the real-valued
case where it suffices to visit a finite number of breakpoints,
here in the complex-valued case there are infinitely many
pieces even in the bounded region C++

[1,2]. It is therefore not
possible to explicitly evaluate f in all these pieces in order to
find x̂∗ and ŷ∗. For this reason we define a parameter dm, and
choose to consider just the breaklines corresponding to d ≤ dm
in Lemma 2. This defines a finite number of pieces, which
we can enumerate and iterate over using the python library
shapely. Each of the resulting pieces has a centroid, and the
collection of such centroids is denoted Cdm(x). Algorithm 1
describes the resulting near-minimization algorithm.

Role of the parameter. The larger the parameter dm, the
closer the resulting pair (x̂, ŷ) is to being optimal, but this will
have an impact on time complexity because this will increase
the number of tested centroids. We will see in the experiment
paragraph that dm = 0 is enough to get better results than the
RTN approach.
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Algorithm 1: Complex rank-one quantization algo-
rithm

Data: x ∈ Cm, y ∈ Cn, t ≥ 1, dm ∈ Z.
Result: x̂∗ ∈ CFm

t , ŷ∗ ∈ CFn
t , λ∗ ∈ C.

1 Initialize x̂∗ ← 0, ŷ∗ ← 0;
2 if x,y ̸= 0 then
3 Build set of centroids Cdm(x) (Lemma 2 and call

to shapely);
4 for λ ∈ Cdm(x) do
5 x̂← round(λx);
6 µ← ⟨x,x̂⟩

∥x̂∥2 ;
7 ŷ ← round(µy);
8 if Cx,y(x̂, ŷ) < Cx,y(x̂

∗, ŷ∗) then
9 x̂∗ ← x̂, ŷ∗ ← ŷ, λ∗ ← λ;

Complexity. The complexity of the algorithm is determined
in several stages. Firstly, the number of breaklines is bounded
by 4mdm2

t−1. Then, according to [5], the maximum number
of regions defined by k straight lines is k(k+1)

2 + 1. In our
case, we can conclude that there are O(m2d2m2

2t) centroids.
For each centroid, we need to calculate Cx,y(x̂, ŷ), which has
a cost ofO(m+n), by exploiting the same trick as in the real-
valued case [7]. The total cost of the algorithm is therefore
O
(
(m+ n)m2d2m2

2t
)
. But, since x and y play symmetrical

roles, we can swap their roles, which will result in a time
complexity of O

(
(m+ n)n2d2m2

2t
)
. Thus Algorithm 1 has a

time complexity O(nmmin(n,m)d2m2
2t).

Experiments and results. We consider 50 pairs (x,y) ∈
C12 × C12, where the real and imaginary parts of each com-
ponent follow a uniform distribution on [0, 1]. We set t = 4.
Table 1 shows the average of the relative quantization error
of our algorithm ρdm

:= ∥xyH−x̂∗(ŷ∗)H∥
∥xyH∥ and the computa-

tion time for different values of dm. The computation time
increases rapidly, while the relative variation between the error
at dm = 0 and dm = 6 is less than 1%. This empirical proof
encourages us to use dm = 0 in the rest of our experiments.

Table 1 – Average of the quantization error and the calculation
time of Algorithm 1 over 50 pairs (x,y) ∈ C12 × C12 with
uniformly distributed real and imaginary parts in [0, 1] for
different values of dm with t = 4.

dm = −2 dm = 0 dm = 2 dm = 6

Error (×10−2) 3.514 2.280 2.259 2.258
Time (s) 1.573e−3 6.711 60.09 172.9

We compare the quantization error of our algorithm, ρdm
,

and the RTN strategy error ρrtn := ∥xyH−round(x) round(y)H∥
∥xyH∥

in Figure 2 with the same setup as before but here we consider
100 pairs of (x,y). Algorithm 1 is more efficient than the
RTN strategy especially for small n. Indeed, when n = 4, ρdm

is approximately 5 times smaller than ρrtn. Furthermore, as n
increases, the point clouds become more concentrated.

We also compared Algorithm 1 to the naive application of
the optimal algorithm for the real-valued case on the real and
imaginary parts of x and y. The results (not displayed) is that
the naive method yields a quantization error approximately 10
times larger than ρdm .
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Figure 2 – Scatterplot of ρdm
, ρrtn for 100 pairs (x,y) ∈

Cn × Cn with uniformly distributed real and imaginary parts
in [0, 1] for different values of n and t with dm = 0.

4 Application to butterfly quantization

We will now apply our algorithm to quantize butterfly matri-
ces similar to those appearing in the FFT. The FFT accelerates
the discrete Fourier transform (DFT) using the Cooley-Tukey
algorithm [1]. The main idea is to use the divide-and-conquer
strategy, which recursively factorizes the DFT of size n× n
into log2(n) sparse matrices (for simplicity we consider here a
dimension n that is a power of two, but more flexible butterfly
factorizations can be defined [9]), the butterfly matrices. If
we denote F ∈ Cn×n the DFT matrix, then its factorization
associated to the Cooley-Tukey algorithm is

F = B1 · · ·BL

where L := log2(n) and the Bi are structured sparse matrices
with the so-called Kronecker-sparse structure [9].

To quantize the factors Bi, in the spirit of what was done
in the real-valued case [7], we aim to leverage Algorithm 1 to
work on a product of complex-valued butterfly factors.

Quantization algorithm for butterfly matrices. First, let us
take a detour into optimal quantization for a product of two
(possibly sparse) matrices X,Y ∈ Cn×r: the quantization
problem then reads

X∗,Y ∗ ∈ arg min
X̂,Ŷ ∈CFt

∥XY H − X̂Ŷ
H
∥2 (6)

where CF t is the set of matrices with coefficient in CFt and
the same support as X,Y . The support of a matrix A is the
set of coordinates (i, j) where Ai,j ̸= 0. To the best of our
knowledge, there is no method for finding the optimal quan-
tization for this problem. However, if the rank-one matrices,
xiy

∗
i , where xi and yi are the corresponding columns of X

and Y , 1 ≤ i ≤ n, have disjoint supports, then the problem
(6) can be decomposed into r independent complex rank-one
matrix quantization problems:

∥XY H − X̂Ŷ
H
∥2 =

r∑
i=1

∥xiy
H
i − x̂iŷ

H
i ∥2. (7)

Each sub-problem can be addressed using Algorithm 1.
We can leverage the two-factor setting: the crux is that

when considering certain so-called chainable Kronecker-
sparse factors [9], for any subset of consecutive factors, the
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Figure 3 – Quantization error on the butterfly decomposition
of 100 random matrices as a function of t (n = 256, dm = 2).

product between X = Bl0 · · ·Bl1 ∈ Cn×n and Y H =
Bl1+1 · · ·Bl2 ∈ Cn×n, with 1 ≤ l0 ≤ l1 ≤ l2 ≤ L, can
be written as a sum of n rank-one matrices with disjoint sup-
port [8]. As suggested for the real-valued case [7], this can
be used to heuristically decompose the product of L butterfly
matrices into several products of two matrices to apply the opti-
mal quantization of the problem (6). The quantization of each
product will therefore be optimal, but the global quantization
will not. As in [7] we consider two heuristics:

— pairwise: writing (B1B2)(B3B4) · · · (BL−1BL), quan-
tization is applied to each pair of consecutive factors (if L
is odd the last matrix is quantized using the RTN strategy).

— Left-to-Right (LTR): writing B1 (B2(· · · (BL−1BL))),
quantization is performed from left to right (details in [7]).

We also implement stochastic rounding [3] and fixed-point
rounding [4], which work like RTN, i.e., quantization is ap-
plied element-wise without any rescaling.

Evaluation on random butterfly matrices. To compare these
methods, we generate 10 random collections of Kronecker-
sparse factors B1, . . .BL and quantize them with the methods
described before to obtain B̂1 · · · B̂L. Figure 3 shows the evo-
lution of the quantization error ρ := ∥B1···BL−B̂1···B̂L∥

∥B1···BL∥ for
different values of t and dm = 0. Despite the matrix product
parenthesis heuristic, pairwise and LTR are more efficient than
RTN, stochastic and fixed-point. Indeed, we see that pairwise
and LTR need about 4 bits to achieve an error close to 10−2

while RTN, fixed-point and stochastic must have more than
6 bits to achieve this error. In general, according to the ex-
ponential fit, pairwise and LTR need 1 − 1

1.5 ≈ 30% fewer
bits than RTN, fixed-point and Stochastic to achieve the same
quantization error.

Evaluation on the quantization of the FFT. We also apply
the five quantization algorithms to the (exact) Cooley-Tukey
factorization F = B1 · · ·BL ∈ Cn×n where F is the DFT
and look at the error made if we apply the quantized version
of F to a vector x instead of the applying the original high-
resolution DFT.

Let x ∈ Rn be the signal and y := Fx ∈ Cn its Fourier
transform. We also define ŷ := F̂ x = B̂1 · · · B̂Lx. The
average of ρfft :=

∥y−ŷ∥
∥y∥ to over 10 standard Gaussian signals,

with the five considered algorithms, are displayed in Table 2
with n = 256, t = 5 and dm = 0. Like for the butterfly quanti-

zation error, the LTR and pairwise methods are more efficient
than the RTN, stochastic and fixed-point quantizations.

Table 2 – ρfftwith different quantization strategies for n = 256,
t = 5 and dm = 0.

LTR pairwise RTN Stochastic Fixed

ρfft × 10−2 0.165 0.340 2.339 2.776 3.252

5 Conclusion

In this paper, we proposed an efficient quantization al-
gorithm exploiting rescaling-invariances for complex-valued
rank-one matrices. We showed that this approach enables more
accurate quantization than a naive element-wise rounding. Ap-
plying this algorithm to butterfly matrices, which play a key
role in many fast transforms such as the Fast Fourier Trans-
form, we demonstrated the possibility to reduce quantization
error for a given number of bits, or alternatively to reduce by
30% the required number of bits for a given precision.

Our algorithm depends on a parameter that controls the ac-
curacy but also impacts the computation time. Empirically,
this parameter is not very limiting, but since the real-valued
case lead to a fully optimal algorithm with bounded complex-
ity a natural challenge is to understand whether this remains
possible in the complex-valued case via further mathematical
analysis steps. Furthermore, throughout this paper, we have
neglected underflow and overflow [2, 11]. A similar study
taking these phenomena into account would be interesting.

This work opens the way to several perspectives: the first is
the quantization of the product of matrices of any rank. The
application to butterfly matrices leads us to consider applying
our algorithm to other matrix decompositions, such as the
Toeplitz matrices that models, for example, the covariance
matrix of some time series [6]. Another challenge is to extend
this work to quantize ReLU networks, which satisfy similar
rescaling-invariances.
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